189 research outputs found

    Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts

    Get PDF
    Dynamic global vegetation models (DGVMs) are an essential part of current state-of-the-art Earth system models. In recent years, the complexity of DGVMs has increased by incorporating new important processes like, e.g., nutrient cycling and land cover dynamics, while biogeophysical processes like surface radiation have not been developed much further. Canopy radiation models are however very important for the estimation of absorption and reflected fluxes and are essential for a proper estimation of surface carbon, energy and water fluxes. The present study provides an overview of current implementations of canopy radiation schemes in a couple of state-of-the-art DGVMs and assesses their accuracy in simulating canopy absorption and reflection for a variety of different surface conditions. Systematic deviations in surface albedo and fractions of absorbed photosynthetic active radiation (faPAR) are identified and potential impacts are assessed. The results show clear deviations for both, absorbed and reflected, surface solar radiation fluxes. FaPAR is typically underestimated, which results in an underestimation of gross primary productivity (GPP) for the investigated cases. The deviation can be as large as 25% in extreme cases. Deviations in surface albedo range between −0.15 ≤ Δα ≤ 0.36, with a slight positive bias on the order of Δα ≈ 0.04. Potential radiative forcing caused by albedo deviations is estimated at −1.25 ≤ RF ≤ −0.8 (W m−2), caused by neglect of the diurnal cycle of surface albedo. The present study is the first one that provides an assessment of canopy RT schemes in different currently used DGVMs together with an assessment of the potential impact of the identified deviations. The paper illustrates that there is a general need to improve the canopy radiation schemes in DGVMs and provides different perspectives for their improvement

    Consistent retrieval of land surface radiation products from EO, including traceable uncertainty estimates

    Get PDF
    Earth observation (EO) land surface products have been demonstrated to provide a constraint on the terrestrial carbon cycle that is complementary to the record of atmospheric carbon dioxide. We present the Joint Research Centre Two-stream Inversion Package (JRC-TIP) for retrieval of variables characterising the state of the vegetation–soil system. The system provides a set of land surface variables that satisfy all requirements for assimilation into the land component of climate and numerical weather prediction models. Being based on a 1-D representation of the radiative transfer within the canopy–soil system, such as those used in the land surface components of advanced global models, the JRC-TIP products are not only physically consistent internally, but they also achieve a high degree of consistency with these global models. Furthermore, the products are provided with full uncertainty information. We describe how these uncertainties are derived in a fully traceable manner without any hidden assumptions from the input observations, which are typically broadband white sky albedo products. Our discussion of the product uncertainty ranges, including the uncertainty reduction, highlights the central role of the leaf area index, which describes the density of the canopy. We explain the generation of products aggregated to coarser spatial resolution than that of the native albedo input and describe various approaches to the validation of JRC-TIP products, including the comparison against in situ observations. We present a JRC-TIP processing system that satisfies all operational requirements and explain how it delivers stable climate data records. Since many aspects of JRC-TIP are generic, the package can serve as an example of a state-of-the-art system for retrieval of EO products, and this contribution can help the user to understand advantages and limitations of such products

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm

    Get PDF
    This paper describes the theory and the algorithm to be used in producing a global bidirectional reflectance distribution function (BRDF) and albedo product from data to be acquired by the moderate resolution imaging spectroradiometer (MODIS) and the multiangle imaging spectroradiometer (MISR), both to be launched in 1998 on the AM-I satellite platform as part of NASA's Earth Observing System (EOS). The product will be derived using the kernel-driven semiempirical Ambrals BRDF model, utilizing five variants of kernel functions characterizing isotropic, volume and surface scattering. The BRDF and the albedo of each pixel of the land surface will be modeled at a spatial resolution of I km and once every 16 days in seven spectral bands spanning the visible and the near infrared. The BRDF parameters retrieved and recorded in the MODIS BRDF/albedo product will be intrinsic surface properties decoupled from the prevailing atmospheric state and hence suited for a wide range of applications requiring characterization of the directional anisotropy of Earth surface reflectance. A set of quality control flags accompanies the product. An initial validation of the Ambrals model is demonstrated using a variety of field-measured data sets for several different land cover types

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
    corecore